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ABSTRACT-The ability to recognize edges of an object is of fundamental importance in computer
vision and image processing. In this paper, wc present a fast, efficient mcthod of edge extraction of
images using directional tracing algorithm. Our work builds on the work of R. Nevatia and K.R.
Babu [5], who usc linear feature extraction to present algorithms for edge extraction. By employing
an intuitive principle that an edge pixel should possess local maximum gradient, but having no more
domain information or knowledge, wc propose an effective, robust strategy to extract edges that
integrates directional tracing and feature extraction. We discuss the computational effieiency of our
approach and present a schematic for real time implementation of the algorithm. Application of our
algorithm on different images shows excellent results. Thc main advantages of our technique
include: (i) it can be used for a wide variety of images; (ii) it is simple and easy to implement; (iii) it
is fast; and (iv) the algorithm is flexible to provide performance control.
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1. INTRODUCTION

Edge segmentation is a fundamental technique in image processing and computer vision. Research and
development in this area has increased dramatically over the last twenty years. Even though the literature in
this area is large, it is still an active and important research topic primarily because efficient edge
segmentation is a key to many applications in computer vision, robotics, automatic manufacturing, and in
many other fields.

Edge segmentation includes two basic tasks: Edge Detection and Edge Extraction. Edge detection
means measuring the local 'edgeness' of each pixel in an image; then, based on the detected result, edge
extraction is used to locate the possible edge pixels and link them together to form edges. Edges in an
image are the contours that are recognized by the abrupt changes in grey values. Various computational
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approaches for edge detection have been proposed [1-4]. But no matter what computation scheme is
employed, we can generally consider that the result is some kind of a gradient map for describing the
intensity-changing trend on the pixels of an image. We call the gradient map a rough edge map in this
paper. Once a rough edge map is available, the important problem becomes how to extract the edge pixels
?ut from the map and group them to get the edges. The existing techniques mainly include the following
Issues:

.Thresholding: In a real image, the great majority of non-edge pixels have non-zero intensity
gradients, but their magnitudes usually are very small. Thresholding involves using a suitable
selected threshold value [2, 12] for suppressing the noise effect of non-zero intensity gradients of
non-edge pixels. It is a very practical strategy for separating edge pixels from a rough edge map,
and it is used in many edge segmentation schemes.

.Directional Local Maximum: When a rough edge is produced by directional edge masks [1,2], we
naturally assume that an edge pixel in the map is a local maximum along the gradient direction of
this pixel, and an edge pixel can then be picked up by this maximum. Numerous approaches are
derived from this intuitive idea [2,4, 5].

.Zero-Crossing: For a step edge model, the second order derivative of an edge pixel along its
gradient direction should be zero. For this reason, an edge point is called a zero-crossing point. If
a rough edge map is generated by some second order difference operators, edges pixels can be
isolated by zero-crossing criterion [3, 9].

.Optimal Method: This method concentrates on the optimal characterizations of edge detecting
operators [4, 14, 15], so edge pixels are located.under certain optimality in the presence of local
noise.

.Relaxation: Starting from a rough edge map, a relaxation process [8, 13] uses iterated operation
to reduce and eliminate the ambiguity of the 'edgeness' for the pixels by applying some
knowledge rules and statistical inferences.

An evaluation and comparison on some existing edge extraction schemes is given in Table 1.

Table 1. A comparison on the selection of the edge extraction schemes.
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A brief review of additional edge detection and enhancement teclmiques follows. Jeong and Kim [16]
propose a minimizing function over the entire image and use the relaxation method to solve a nonconvex
optimization problem to estimate a unique scale for edge detection at each point in the image. Their method
is adaptive and is constrained by the complicated shape of the objective function and the resulting
sensitivity of the selected scale to the initial guess. Perona and Malik [20] propose an anisotropic diffusion
network to enhance edges. Here space and time varying conduction coefficients, which are a decreasing
function of the estimated gradient magnitude of the luminance function, determine the rate of diffusion at
that point. Lindeberg [17] [18] proposed methods for selecting a local scale for edge detection based on
maximizing a heuristic measure of edge strength.

Phoha and Oldham use the principle of competitive learning to develop an iterative algorithm [21] [22]
for image recovery and segmentation. In this study, within the framework of Markov Random Fields

(MRF), the image recovery problem is transformed to the problem of minimization of an energy function.
A local update rule for each pixel point is then developed and shown to be a gradient descent rule for an
associated global energy function. Simulation experiments using this algorithm on real and synthetic
images show promising results in smoothing within regions and also in enhancing the boundaries. Elder
and Zucker [19] use the knowledge of sensor properties and operator norms to minimize the reliable scale
for local estimation at each point in an image. They apply this knowledge to detect and localize edges in
images with shallow depth of field and shadows.

For edge extraction, the concept of Directional Local Maximum seems to be the most basic, intuitive
idea. A similar role for edge detection is played by the concept of Mask Matching. We make a claim that
different approaches for edge detection and extraction are just different formulations based on these two
concepts. Also there is evidence that the mammalian visual system responds to. edges through special low-
level template-matching edge detectors [2].

In this paper, we describe an effective edge extraction approach using directional tracing. The
development of our technique arose from the need of a fast edge-extracting algorithm for real-time stereo
analysis. The zero-crossing method and the relaxation scheme are not good candidates for our requirements
because edges derived from the former often suffer location errors, and the latter usually is time
consuming. As for the optimal method, we know that generally, the analysis is in the continuous domain,
and the optimality of a solution is based on the assumed conditions and criterion. Therefore, we try to fmd
a better solution by using the basic approach of Directional Local Maximum.

When taking the edge as an image primitive for stereo analysis or any other use, we assume that the
images possess rather sharp contour features. Intuitively, for edge masks the execution can be realized in
real time by hardware [7]. If the edges are confined to straight lines, the teclmique presented by Nevatia
and Babu [5] gives a simple, effective solution for our need in principle. But for the general situation, the
various teclmiques summarized in [2] are not good enough for different reasons. In this paper, we extend
Nevatia and Babu's approach [5] to a general situation.

The key problem in the extension is to find a way to effectively handle direction information. Nevatia
and Babu [5] did not investigate whether their teclmique was useful for locating the position of an edge and
used six 5x5 directional edge masks as edge detectors. However, we noticed that the masks of size 5x5
sometimes cause an edge to depart one pixel from its best position, even for straight lines. The 3x3 masks
are a better choice computationally, and we adopted several measures to achieve comparably better and
satisfactory results using 3x3 masks.

This paper is organized as follows: section 2 describes our algorithms in detail; section 3 contains
experimental results and comparisons; and section 4 contains conclusions and future work.

2. A NEW TECHNIQUE OF DIRECTIONAL EDGE TRACING

Our edge extraction is a three-stage process:
(1) Production of a rough edge map;
(2) Determination of candidate edge pixels;
(3) Obtaining fmal edges.

A detailed description for each of the three stages follows in the below sub-sections.
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feature to a pixel, both in continuous and discrete domains
[2, 4, 5]. We have selected 8 directional masks since they
naturally fit the popular eight-neighbor format of a digital
image.

The proposed directional-tracing algorithm does not
depend on any special edge detectors. It works based on a
gradient map where each pixel has two interrelated
components-its magnitude and direction. However, the
selections of detectors do affect the tracing process in
certain ways. Some of the effects are well known, such as
the smaller masks are sensitive to noise whereas the larger
masks cannot resolve fme details, and the bigger the size of
a mask, the higher the cost of the convoluting computation.
Since we consider edge points as those which possess

Ideal
Edge-""

directional local maximum in a rough edge
map, it is important to know what are the
effects on the position of the edge pixels by
using different detectors. For instance,
consider the ideal step edge pattern in
Figure 2:

The edge on the pattern should be a
subpixelline (the bold line on the figure)
located between the two regions with the
values 10 and 20 respectively. At pixel
level, however, all the pixels along the ideal

Figure 2. An ideal digital step edge pattern.
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2.2 Determination of Candidate Edge Pixels
As presented in [5], for the straight lines in aerial images, an edge pixel should satisfy the' following

three criteria using the principle of local directional maximum:

1. The magnitude of the gradient at a pixel exceeds a given thresholding value T.
2. The edge magnitude at the pixel is larger than the edge magnitudes of its two neighboring pixels

in the direction normal to the direction of this pixel.
3. The direction features of the two neighboring pixels are in the interval

[d -Jr/6, d + 7t/6].
Then, the pixel is considered a candidate of edge pixel; and the two neighboring pixels along the

normal direction of this pixel are disqualified from being candidates of edge pixels.
In the general situation, however, we may miss some edge pixels by simply using these three criteria.

For example, the two-pixel wide edge in Figure 2 cannot be identified by the criteria; on the other hand,
because of the noise effects, different edge masks may have some convolution output on a pixel. If this
output happens to be the magnitude of the pixel, there is no determined way to assign the pixel a correct
gradient direction. Edge pixels, derived by the principle of local directional maximum, will be further
judged in the following stage of directional tracing. It is usually easier to remove a poor candidate than to
recover a missing edge pixel in the processing of directional tracing. We prefer to reserve as many
candidates of edge pixels as we can in the stage of edge pixel extraction. Hence, we reformulate the above
conditions 2 and 3 into 2' and 3' respectively as follows:

2'. Let m be the edge magnitude at the current pixel p; In the two normal directions relative to the
directional feature of p, let the edge magnitudes of the two successive neighboring pixels be mil and ml2
along one direction, and m21, m22 along the another. Then, p is a possible edge pixel if one of following
conditions is held:

(a) m > mIl and m > m21;
(b) m = mll,m > ml2,and m > m21;
(c) m = mll,m=m21,m > mn. and m > m22.
3'. One of the direction features of the two neighboring pixels is not normal to d.
The following algorithm presents the process in detail.
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2.3 Obtaining Final Edges
Directional tracing uses the relationship among edge pixels to combine them together. This method has

been successfully applied for extracting straight lines in aerial images [4, 5]. We extend the technique to a
more general situation.

There are two sets of functions in the edge tracing process. One is to confirm the good edge points and
remove the poor ones in E (u, v) derived by Algorithm 1. Another is to label the related edge points to form
an integrated edge. In this paper, we only consider the fIrst function. The approach proposed by [5] fulfills
the two functions in one execution for straight lines. However, if the edges are not straight lines, we have
sufficient reasons to separate the two functions in two executions step by step. For example, by the first
function, we need to remove some poor edge segments; by the second function, we need to connect some
separate edge segments together. If the edges in consideration possess different shapes and not just straight
lines, then we may get confused in some edge segments due to the two conflicting needs.
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Figure 3. Illustrations on tracing directions.

Our tracing strategy is intuitive and simple. Suppose a non-isolated edge point p sin E(u, v) is selected
as the starting point. Let p +- p sand d be the direction of p .Then, in the searching order of d, dl = (d +

1) mod 8 and d7 = (d + 7) mod 8 as shown in Figure 3-(a), if there is a neighboring edge point p I of p in

one of the three directions, link p 1 to p; then, let p +- p 1 and repeat the same procedure for the new

p .When the first tracing procedure terminates, as illustrated in Figure 3-(b), another tracing process will

be started from p s along the direction, which is opposite to the original direction of p s. The edge

segment passing through Psis then the combination of the two tracing results.

In the presence of noise, we should notice that, when p I is linked to p , the direction feature of p I

may point back to p as shown in Figure 3-(c), where the direction feature d of p comes from p to p I,
but the direction d' of p 1 may take the values of d3 = (d + 3) mod 8, d4 = (d + 4) mod 8, or ds = (d + 5)
mod 8. For these cases, the tracing direction should be reversed to the opposite direction d'i = (d; + 4) mod
8, (i = 3, 4, 5).

Algorithm 2 is the formal description of this tracing strategy.
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The parameter LT) for the procedure Directional_Tracing ( ) has a control threshold to interrupt the
tracing process from falling into a dead loop. Depending on the size of an edge map, an arbitrary large
number can be applied for this purpose. In fact, the chances that the tracing process falls into a dead loop
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end
end

en4 (for)
end (Trq;cin;g>.

2.4 The Computational Efficiency of Our Technique
The effectiveness of our method on edge extraction is presented by the experimental investigation in

section 3. In this section, we discuss the computational efficiency of our technique.

In principle, the time complexity of an edge extraction algorithm is 0 (nl x n2 x n3) for a digital image

with size n) x n2 is included because the algorithm must scan every pixel in an image to find its edgeness;

factor n3 corresponds to the complexity of the processing procedure on a pixel. So, ideally we hope to
achieve n3 = 1. In other words, we should simplify the processing procedure on a pixel a much as possible.

For the aforementioned edge extraction schemes in section 1, the approaches of zero-crossing and
optimal method need to employ edge detecting operators in various scales for edgeness analysis; relaxation
and many previous directional tracing algorithms require certain complicated searching procedures in
finding an edge pixel. These methods are more expensive than Nevatia and Babu's method [5] from the
viewpoint of computational efficiency. But the application of the latter is confined to straight lines.

As a general extension of [5], the algorithms presented in the above sections maintain the simplicity by
their straightforward and determined style. In algorithms 1 and 2, we intentionally ignore carrying out a
complex searching procedure in some big and complete search space but specify the searching and
comparison in a limited and determined range to decide whether an image pixel is an edge pixel or not. The

for v +- I to f%3.
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algorithm is fast in execution and the experimental results show that our idea works well. Notice that for
the procedure Tracing ( ) in section 2.3, if a traced segment is not judged long enough by the control
parameter LT2, we keep the segment in E (u, v). This will cause a noise segment being traced up to the
times of its length, but the measure can prevent removing an edge segment when a tracing procedure
begins at an unsuitable starting point. There is no significant effect on the algorithm execution of this
measure, and it is worth paying the price for our main purpose.

Our method can be implemented in hardware for real-time performance; parallel-processing
techniques can be applied to improve performance in software. Figure 4 presents one possible
implementation. In Figure 4, and in the following sections, we name Initial Edge Map and Final Edge Map
for the results obtained by successive processes of thresholding and tracing on a rough edge map

respectively.

Original
Picture'

~..

~ "
~nsD

processing
Algorithm2

8 -Channel
Hardware

Convolution

Parameter
Control

..

j,.,

M1SD
proce~g
Algorithm 1

Initial
Edg,r Map

Rough
Edge Map

Figure 4. A real time implementation scheme for our method.

3. EXPERIMENTAL RESULTS

3.1 BackgroundIn the evaluation of the techniques on edge detection and extraction, two common criteria are used: the
flTst requirement is that of a high rate in finding a real edge and low rate in producing a fault edge; the
second is the correctness in the position of the found edges. However, there is no formal way to asses the
effectiveness of the two criteria, except perhaps by a visual inspection, and so we present results of our

approach using a visual inspection.Figure 5 illustrates the process of our methods. In (b), a rough edge map is generated by 3x3
difference masks on the original picture (a). After the thresholding process using a threshold value of T =

8, we got (c) from (b); then (c) was refined by the directional tracing to (d). Finally, we superimposed (d)

on (a) and checked if the obtained edges fit the original picture correctly.
Three factors that affect the performance of our approach are the edge detectors, the threshold value T

of algorithm 1, and the length control parameter L T 2 of algorithm 3. We discuss their effect in the

following three sections.
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Figure 5. The process of edge detection, extraction and evaluation.

3.2 Mask Effects
Edge detecting masks vary in their patterns and sizes. Although different masks certainly produce

different rough edge maps, we use only one intuitive rule--the principle of local directional maximum-
for generating an initial edge map from a rough edge map. Whether the principle is efficient enough for
picking edge pixels up is the key to the effectiveness of our technique. Our experiments on this problem
are shown in Figures 6 and 7.

The original picture is shown in Figure 6-(a). We used four different mask sets to detect its edges. Two
sets of masks are Kirtch operators and difference operators as described in section 2.1. One of the other
two sets of masks is 3x3 Robert operators, another is the extension of the Robert Operators to a 5x5
version. They can be derived by rotating ro and Ro defined respectively as follows:

1 2 2 2 1[ 1 2 1 ] 1 2 2 2 1

'0 =: 0 0 a Ro = 0 0 0 0 0

.-1 -2 -1 -1 -2 -2 -2 -1

-1 -2 -2 -2 -1

We can see from (d) to (i) in Figure 6 that different 3x3 masks produce almost the same results. In
fact, when the masks have the same size, we can expect that, if a pixel is a local directional maximum
under one of the three 3x3 mask sets, it should also be the local directional maximum to the other two
mask sets. However, because different mask patterns give out different magnitude output, some pixels will
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be removed by thresholding under this mask set but not by the others. At this time, differences may occur.
For example, the results for Difference and Robert operators in Figure 6 are obtained by threshold value 8,
but those for the Kirtch operator are obtained by threshold value 12. The result 6-(c) comes from the 5x5
masks. It seems to have little noise.

For checking the fitness of the edge map with the original picture, we superimpose the edge maps 6-(i)
and 6-(c) on 6-(a), and the composed pictures are displayed in Figure 7. We see that the two edge maps fit
the picture nicely. Notice that in Figure 7, the lady's necklace and dimples near her mouth look wider in
(b) than in (a), and the same thing can also be observed in Figure 6. By more precise investigation in pixel
level, we can say that an edge being drawn by a human being on a digital picture is more like the one
derived by 3x3 masks but not that by 5x5 masks. Generally, this kind of location deviation is I-pixel
distance, and it occurs when some edge segments are close or near.
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(a) Su~rlm~tion of 6-(i) on 6m(a)

(b) Superimposition of 6.(c) on 6--(.)

Figure 7. The edge fitness of 3x3 mask vs. 5x5 mask.
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From this observation, we can conclude that the bigger the size of masks, the bigger the chance of
error on the edge location. An edge location can be obtained in pixel level by using 3x3 masks. The edge
location is very good in pixel level. Also, our algorithm is mask insensitive when a suitable threshold value
is selected. On the other hand, we noticed that when 3x3 operators missed a edge segment, which occurred
on a man-made edge map, in most of the cases, if we isolated that area from the picture and asked another
person coming to judge the area, the person would think that there is no edge. For example, the part of the
lady's right shoulder in Figure 6 is such a case. Therefore, we can simply depend on the edge-fmding rate
of the edge detectors. But the final selection of an edge pixel is also decided by the two control parameters
TandLT2in algorithms I and 2.

3.3 Threshold Control and Tracing Control
The perfonnance control of our technique is determined by the threshold T in algorithm 1 and the

parameter LT2 in algorithm 3. Because we try to let our method be applied to a wide variety of images,
there is no determined way, or it is impossible sometimes, to have a way for fmding a unifonn T or L T 2 for
our algorithms. However, when using the algorithms to some specific or for some special purpose, we can
adjust the two parameters for achieving better perfonnance. In Figures 5 and 6, we see that the two control
factors are very efficient for separating the edge pixels and the random noises. Because of their combined
effect, the two parameters can be set in small values that work well. Figure 8 illustrates the effects of the
parameters T and LT 2 in detail. In the picture (a) of Figure 8, the background behind the car is grass. The
grass may be considered as noise. However it is difficult to remove this kind of irregular texture noise. For
our algorithm, we show in Figure 8 that either of the two parameters can serve for simplifying an edge
map, and their combination would be more powerful.

Instead of directly removing an edge segment upon the threshold of the two control parameters, a
noticeable idea is to label an edge segment with these two parameters. For our original interest of stereo
analysis, suppose we need to keep as many candidate edge segments as we can, and we also need to
classify edge segment's feature in some priority for processing, we can simply give an order to the nine
situations of (d) to (s). Then, each edge segment can be assigned to an order number. The assignment
processing do not need extra time but only work in passing during our tracing period. Then, stereo analysis
can go on in order.

3.4 More Examples
More application examples of our algorithms are given in Figure 9. Each of the three results is

generated by 3x3 masks and difference operators T =8 and LTz = 6. We see that, for different kinds of
images, when the contour features are formed by sharp changes of intensity, the results of our algorithm
are satisfactory. However, if the edges themselves are not sharp enough, our method does not work well.
This is the typical limitation of our method.

In this situation, increasing the size of edge detectors may lead to better results, but we still have no
information for locating the correct position of an edge.

Note that we usually expect that an edge or edge segment is single-pixel wide. For our tracing strategy,
the situation described in Figure 10 will result in double-pixel wide edges. In the figure, all the darkened
pixel positions will be determined as edge pixels by our algorithms. There is no problem in changing such
an edge to a single-pixel wide one, but this will take some execution time. It could not be figured out if
their presence leads to a negative effect, hence it has been included.

4. CONCLUSIONS AND FUTURE WORK

We have presented a simple and efficient technique of edge extraction. Our approach depends on the
intuitive and basic ideas of edge detection and extraction. Application of our technique on several images
and our experiments show excellent results. The main advantages of our method are summarized as
follows:

.Applicable to a wide variety of images
.Computationally easy
.Fast execution
.Flexible perfonnance control
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Our technique can be implemented in parallel and can be implemented in hardware for real time

performance.
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Figure 9. More Examples.

As mentioned in section 2.3, in this work we focused on using directional tracing for the purpose of
confirming edge point and removing noise. We can extend this technique to edge linking by searching and
following an edge segment pixel by pixel; linking will extend the searching range across the terminal of an
edge segment and connect two segments together according to a certain criteria. Notice that our present
approach is domain independent. It can be further improved by edge linking and combining with
approaches [10, 11]. We are currently working to add domain related information and knowledge-based

guidance in our approach.
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Figure 10. A double-wide edge.
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